3. Matrix Diagonalization

Steps to Diagonalize a Matrix

  1. Find the Eigenvalues of A
  2. Find the Eigenvectors of A
  3. Construct the Matrix P
  4. Construct the Diagonal Matrix D
  5. Verify the Diagonalization

Let us now learn how to Diagonalize a Matrix A step by step.

A Matrix
\[\Large A = \begin{bmatrix} 4 & 1 \\ 3 & 2 \end{bmatrix} \]
  • For the above Matrix A we can find the Eigenvalues as 5 and 1
  • Click here if you need a detailed explanation on finding the Eigenvalues for A
Colored Eigenvalues
\[\Large \textcolor{red}{\lambda_1 = 5} \quad \text{and} \quad \textcolor{blue}{\lambda_2 = 1} \]

Eigenvectors
\[\Large \textcolor{red}{\lambda_1 = 5} \quad \text{has eigenvector:} \quad \textcolor{red}{ x_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} } \]
\[\Large \textcolor{blue}{\lambda_2 = 1} \quad \text{has eigenvector:} \quad \textcolor{blue}{ x_2 = \begin{bmatrix} 1 \\ -3 \end{bmatrix} } \]
  • Click here if you need a detailed explanation on finding the Eigenvectors for A

MCQ on Matrix Diagonalization

Which of the following is the correct first step in diagonalizing a matrix A?

Pages: 1 2 3 4 5 6